Preliminaries
We begin with the definition of the \(n\)-th tensor product.
\(n\)-th tensor product
Definition. For a finite dimensional complex vector space \(V\), and an natural number \(n\), we define the
complex \(n\)-th tensor product as follows
\[
V^{\otimes n}:=F\left(V^{n}\right) / \sim
\]
where \(F\left(V^{n}\right)\) is the free abelian group on \(V^{n}\), considered as a set, and \(\sim\) is the
equivalence relation defined for \(v_{1}, \ldots, v_{n}, \hat{v}_{1}, \ldots, \hat{v}_{n}, w_{1}, \ldots, w_{n}
\in V\), as
\[
\left(v_{1}, \ldots, v_{n}\right) \sim\left(w_{1}, \ldots, w_{n}\right)
\]
whenever there exists a \(k \in \mathbb{C}\) such that \(k\left(v_{1}, . ., v_{n}\right)=\left(w_{1}, \ldots,
w_{n}\right)\), and
\[
\left(v_{1}, . ., v_{i}, \ldots v_{n}\right)+\left(v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right)
\sim\left(v_{1}, . ., v_{i}+\hat{v}_{i}, . ., v_{n}\right)
\]
Remark. One can easily verify that this is indeed an equivalence relation.
Next we will use the following definitions of some interesting subvector spaces of the \(n\)-th tensor product,
which will be of the most interest in this paper.
\(n\)-th symmetric and alternating spaces (powers)
Definition. For a complex finite dimensional vector space \(V\), and a natural number \(n\), we define the
complex \(n\)-th symmetric space denoted \(\operatorname{Sym}^{n}(V)\), as the subspace of
\(V^{\otimes n}\), spanned by the following set,
\[
\left\{\sum_{\sigma \in \mathfrak{S}_{n}} v_{\sigma(1)} \otimes \ldots \otimes v_{\sigma(n)} \mid v_{i} \in
V\right\}
\]
and denote a generator \(\sum\limits_{\sigma \in \mathfrak{S}_{n}} v_{\sigma(1)} \otimes \ldots \otimes
v_{\sigma(n)}=v_{1} \cdots v_{n}\).
Definition. For a finite dimensional complex vector space \(V\), and an natural number \(n\), we define the
complex \(n\)-th alternating space denoted \(\bigwedge^{n} V\), as the subspace of \(V^{\otimes
n}\), spanned by the following set
\[
\left\{\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) v_{\sigma(1)} \otimes \ldots \otimes
v_{\sigma(n)} \mid v_{i} \in V\right\}
\]
and denote a generator \(\sum_{\sigma \in \mathfrak{S}_{n}} \operatorname{sgn}(\sigma) v_{\sigma(1)} \otimes
\ldots \otimes v_{\sigma(n)}=v_{1} \wedge \cdots \wedge v_{n}\).
Remark. The experienced and curious reader may be asking themselves why we chose these definitions, rather
than more accepted ones, while these definitions, over \(\mathbb{C}\), are equivalent it takes some work to show
this non-trivial fact, so to avoid the discussion we chose these definitions.
Complex Group Algebra
Definition. For a group \(G\), we define the complex group algebra of \(G\) denoted as \(\mathbb{C} G\) as,
the \(|G|\)-dimensional complex vector space with the canonical basis indexed by elements of \(G\), that is for
\(g \in G\) we have a basis element \(e_{g} \in \mathbb{C} G\), where we define the multiplication in \(\mathbb{C}
G\) on basis elments, for \(g_{1}, g_{2} \in G\) as
\[
e_{g_{1}} \cdot e_{g_{2}}=e_{g_{1} \cdot g_{2}}
\]
and expand the definiton linearly for the remaining elements.
Remark. We can see that if \(G\) is non-abelian then so is \(\mathbb{C} G\) and if \(|G|=\infty\) then
\(\mathbb{C} G\) has inifinte dimension.
Young Symmetrizer
A Young symmetrizer is defined using a Young tableau associated
with a partition of \( n \). It involves two subgroups of the
symmetric group \( \mathfrak{S}_{n} \):
-
\( P_{\lambda} \): The subgroup preserving each row of the
tableau.
- \( Q_{\lambda} \): The subgroup preserving each column.
Two elements in the group algebra \( \mathbb{C}\mathfrak{S}_{n} \) are
constructed:
\[ a_{\lambda} = \sum_{g \in P_{\lambda}} e_g \]
\[ b_{\lambda} = \sum_{g \in Q_{\lambda}} \text{sgn}(g) e_g
\]
The Young symmetrizer is the product \( c_{\lambda} =
a_{\lambda} b_{\lambda} \), which corresponds to an irreducible
representation of \( \mathfrak{S}_{n} \).
For instance, if \( n = 4 \) and \( \lambda = (2, 2) \), with
the canonical Young tableau \( \{ \{1, 2\}, \{3, 4\} \} \). Then
the corresponding \( a_{\lambda} \) is given by \[ a_{\lambda} =
e_{\text{id}} + e_{(1,2)} + e_{(3,4)} + e_{(1,2)(3,4)}. \] For
any product vector \( v_{1,2,3,4} := v_1 \otimes v_2 \otimes v_3
\otimes v_4 \) of \( V^{\otimes 4} \) we then have
\[
v_{1,2,3,4} a_{\lambda} = v_{1,2,3,4} + v_{2,1,3,4} +
v_{1,2,4,3} + v_{2,1,4,3} = (v_1 \otimes v_2 + v_2 \otimes v_1)
\otimes (v_3 \otimes v_4 + v_4 \otimes v_3).
\]
Thus the set of
all \( a_{\lambda} v_{1,2,3,4} \) clearly spans \(
\operatorname{Sym}^2 V \otimes \operatorname{Sym}^2 V \) and
since the \( v_{1,2,3,4} \) span \( V^{\otimes 4} \) we obtain
\[ V^{\otimes 4} a_{\lambda} \equiv
\operatorname{Im}(a_{\lambda}). \] Notice also how this
construction can be reduced to the construction for \( n = 2 \).
Let \( 1 \in \operatorname{End}(V^{\otimes 2}) \) be the
identity operator and \( S \in \operatorname{End}(V^{\otimes 2})
\) the swap operator defined by \( S(v \otimes w) = w \otimes v
\), thus \( 1 = e_{\text{id}} \) and \( S = e_{(1,2)} \). We
have that \[ e_{\text{id}} + e_{(1,2)} = 1 + S \] maps into \(
\operatorname{Sym}^2 V \), more precisely \[ \frac{1}{2} (1 + S)
\] is the projector onto \( \operatorname{Sym}^2 V \). Then
\[
\frac{1}{4} a_{\lambda} = \frac{1}{4} (e_{\text{id}} + e_{(1,2)} + e_{(3,4)} + e_{(1,2)(3,4)})
= \frac{1}{4} (1 \otimes 1 + S \otimes 1 + 1 \otimes S + S \otimes S)
= \frac{1}{2} (1 + S) \otimes \frac{1}{2} (1 + S)
\]
which is the projector onto \(\operatorname{Sym}^2 V \otimes \operatorname{Sym}^2 V \).
Lemma 3.1. With the definition above \(P\) and \(Q\) are both subgroups of \(\mathfrak{S}_n\), in
particular, \(P \cong \bigoplus_{i=1}^k \mathfrak{S}_{\lambda_i}\), and \(Q \cong \bigoplus_{i=1}^{k^{\prime}}
\mathfrak{S}_{\lambda_i^{\prime}}\), where \(k^{\prime}\) denotes the number of columns in the Young's diagram.
Lemma 3.2. Let \(V\) be a finite dimensional complex vector space, \(\lambda\) be a partition of \(n \in
\mathbb{N}\), and consider the canonical Young tableau. Then
\[
a_{\lambda}\left(V^{\otimes n}\right) \cong \operatorname{Sym}^{\lambda_{1}} V \otimes
\operatorname{Sym}^{\lambda_{2}}(V) \otimes \ldots \otimes \operatorname{Sym}^{\lambda_{d}} V
\]
and
\[
b_{\lambda}\left(V^{\otimes n}\right) \cong \bigwedge^{\lambda_{1}^{\prime}} V \otimes
\bigwedge^{\lambda_{2}^{\prime}} V \otimes \ldots \otimes \bigwedge^{\lambda_{d^{\prime}}^{\prime}} V
\]
where \(\lambda^{\prime}\) is the conjugate partition to \(\lambda\).
Schur's Functor
We will denote the image of the Young symmetrizer on \(V^{\otimes n}\) as \(\mathbb{S}_{\lambda} V\), that is
\[
\mathbb{S}_{\lambda} V=c_{\lambda}\left(V^{\otimes n}\right)
\]
Definition. We consider \(\mathbb{S}_{\lambda}:\) Vect \(_{\mathbb{C}} \rightarrow\) Vect
\(_{\mathbb{C}}\), as a functor from the category of complex vector spaces to itself.
We call this functor the Schur functor corresponding to \(\lambda\).
Remark. To see that this is a well defined functor recall that the functors \(\bigwedge^{n}:\) Vect
\(_{\mathbb{C}} \rightarrow\) Vect \(_{\mathbb{C}}\), Sym \(^{n}:\) Vect \(_{\mathbb{C}} \rightarrow\) Vect
\(_{\mathbb{C}}\), and \(\bigotimes^{n}:\) Vect \(_{\mathbb{C}} \rightarrow\) Vect \(_{\mathbb{C}}\), are all well
defined functors. Thus for any vector spaces \(U, V, W\) and \(\mathbb{C}\)-linear maps, \(\varphi: V \rightarrow
W, \psi: W \rightarrow U\) we have, that the following diagram commutes.
\[
\begin{array}{cccccc}
& V^{\otimes n} & \xrightarrow{\quad\varphi^{\otimes n}\quad} & W^{\otimes n} & \xrightarrow{\;\psi^{\otimes n}\;}
& U^{\otimes n} \\
& \downarrow{b_\lambda} & & \downarrow{b_\lambda} & & \downarrow{b_\lambda} \\
& b_\lambda(V^{\otimes n}) & \to & b_\lambda(W^{\otimes n}) & \to & b_\lambda(U^{\otimes n}) \\
& \downarrow{a_\lambda} & & \downarrow{a_\lambda} & & \downarrow{a_\lambda} \\
& a_\lambda\!\bigl(b_\lambda(V^{\otimes n})\bigr) & \to & a_\lambda\!\bigl(b_\lambda(W^{\otimes n})\bigr)
& \to & a_\lambda\!\bigl(b_\lambda(U^{\otimes n})\bigr) \\
& \downarrow{=} & & \downarrow{=} & & \downarrow{=} \\
& S_\lambda(V) & \xrightarrow{S_\lambda(\varphi)} & S_\lambda(W)
& \xrightarrow{S_\lambda(\psi)} & S_\lambda(U) \\
\end{array}
\]
Thus \(\mathbb{S}_{\lambda}:\) Vect \(_{\mathbb{C}} \rightarrow\) Vect \(_{\mathbb{C}}\) is well defined.
To get a better grip of these we will first look at the two easiest examples and then return to example 3.3 from
the last section to see a more involved example of \(\mathbb{S}_{\lambda}\).
Example.
Let \(n=4\) and consider the two partitions let \(\lambda_{1}=(1,1,1,1)\) and \(\lambda_{2}=(4)\), that is when we
consider the canonical Young tableau of \(\lambda_{1}\), and \(\lambda_{2}\) we have
\[
\lambda_1 \;=\;
\begin{array}{|c|}
\hline
1 \\
\hline
2 \\
\hline
3 \\
\hline
4 \\
\hline
\end{array}\,, \quad \lambda_{2}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline
\end{array}
\]
By definitions, we have that
\[
P_{\lambda_{1}}=\{()\}, \quad Q_{\lambda_{1}}=\mathfrak{S}_{4}
\]
and
\[
P_{\lambda_{2}}=\mathfrak{S}_{4}, \quad Q_{\lambda_{2}}=\{()\}.
\]
Then, we can quickly calculate that
\[
c_{\lambda_{1}}=a_{\lambda_{1}}b_{\lambda_{1}}=b_{\lambda_{1}}=\sum_{\sigma \in \mathfrak{S}_{n}}
\operatorname{sgn}(\sigma) e_{\sigma}, \quad
c_{\lambda_{2}}=a_{\lambda_{2}}b_{\lambda_{2}}=a_{\lambda_{2}}=\sum_{\sigma \in \mathfrak{S}_{n}} e_{\sigma}.
\]
Hence, if we consider any vector space \(V\) over \(\mathbb{C}\), by Lemma 3.2 we have that
\[
\mathbb{S}_{\lambda_{1}}(V)=\bigwedge^{4}(V), \quad \mathbb{S}_{\lambda_{2}}(V)=\operatorname{Sym}^{4}(V)
\]
References
-
R. Vandermolen, Schur Functors (a project for class),
https://people.math.sc.edu/robertv/schur.pdf
-
Man-Wai (Mandy) Cheung, Christian Ikenmeyer, Sevak Mkrtchyan
Symmetrizing Tableaux and the 5th case of the Foulkes
Conjecture, Journal of Symbolic Computation, volume 80, pages
833-843, 2017.
-
Björner, Anders, and Francesco Brenti. 2005. Combinatorics
of Coxeter Groups. New York, NY: Springer.
-
GAY, DAVID A. “CHARACTERS OF THE WEYL GROUP OF SU(n) ON ZERO
WEIGHT SPACES AND CENTRALIZERS OF PERMUTATION
REPRESENTATIONS.” The Rocky Mountain Journal of Mathematics
6, no. 3 (1976): 449–55.
-
Fulton, William, and Joe Harris. 1991.
Representation Theory : A First Course. New York:
Springer-Verlag.
-
Fulton, William. 1997.
Young Tableaux : With Applications to Representation
Theory and Geometry. Cambridge [England]: Cambridge University Press.
https://doi.org/10.1017/CBO9780511626241.
-
Ikenmeyer, Christian.
Geometric Complexity Theory, Tensor Rank, and
Littlewood-Richardson Coefficients. PhD diss., University of Paderborn, 2012. Examined by
Johannes G. Blömer, Peter Bürgisser, and Joseph M.
Landsberg. Defense date: October 18, 2012.
urn:nbn:de:hbz:466:2-10472.